
NASA/CR-2000-210120

ICASE Report No. 2000-23

Efficient Parallel Computation of ILU(k)
Preconditioners

David Hysom and Alex Pothen

Old Dominion University, Nolfolk, Virginia

May 2000

The NASA STI Program Office... in Profile

Since its founding, NASA has been dedicated

to the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key

part in helping NASA maintain this

important role.

The NASA STI Program Office is operated by

Langley Research Center, the lead center for
NASA's scientific and technical information.

The NASA STI Program Office provides

access to the NASA STI Database, the

largest collection of aeronautical and space

science STI in the world. The Program Office
is also NASA's institutional mechanism for

disseminating the results of its research and

development activities. These results are

published by NASA in the NASA STI Report

Series, which includes the following report

types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results

of NASA programs and include extensive

data or theoretical analysis. Includes

compilations of significant scientific and
technical data and information deemed

to be of continuing reference value. NASA

counter-part or peer-reviewed formal

professional papers, but having less

stringent limitations on manuscript

length and extent of graphic

presentations.

TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain
minimal annotation. Does not contain

extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATIONS.

Collected papers from scientific and

technical conferences, symposia,

seminars, or other meetings sponsored or

co-sponsored by NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific

and technical material pertinent to
NASA's mission.

Specialized services that help round out the

STI Program Office's diverse offerings include

creating custom thesauri, building customized

databases, organizing and publishing

research results.., even providing videos.

For more information about the NASA STI

Program Office, you can:

Access the NASA STI Program Home

Page at http://www.sti.nasa.gov/STI-

homepage.html

• Email your question via the Internet to

help@ sti.nasa.gov

• Fax your question to the NASA Access

Help Desk at (301) 621-0134

• Phone the NASA Access Help Desk at

(301) 621-0390

Write to:

NASA Access Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076-1320

NASA/CR-2000-210120

ICASE Report No. 2000-23

-- :-%i

_i__ _ ._i_i!i....... _; _

Efficient Parallel Computation of ILU(k)
Preconditioners

David Hysom and Alex Pothen

Old Dominion University, Nolfolk, Virginia

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contract NAS 1-97046

May 2000

Available fi'om tile following:

NASA Center for AeroSpace hffomlation (CASI)

7121 Standard Drive

Hanover, MD 21076 1320

(301) 621 0390

National TectHficalhffomlation Service(NTIS)

5285 Port Royal Road

Spfingfield, VA22161 2171

(703) 487 4650

EFFICIENT PARALLEL COMPUTATION OF ILU(K) PRECONDITIONERS *

DAVID HYSOM AND ALEX POTHENt

Abstract. We report the development of a parallel algorithm for computing ILU preconditioners. The

algorithm attains a high degree of parallelism through employment of a two-level ordering strategy, coupled

with a subdomain graph constraint that regulates the location of nonzeros in the Schur complement. Ex-

perimental results include timings on four parallel platforms, for problems with up to 20 million unknowns

running on up to 216 processors. The results support our theoretic analysis that the algorithm is highly

scalable, for both preconditioner computation (factorization) and application (triangular solve) stages.

Key words, incomplete factorization, preconditioning, parallel ILU preconditioning

Subject classification. Computer Science

1. Introduction and Background. Solving large, sparse systems of linear equations of the form

Ax = b is a key component in many scientific and engineering numerical computations. Such systems

typically arise during the discretization or linearization of systems of partial differential equations (PDEs)

in the spatial and time domains. Since the LU factors tend to be dense even when A is sparse, iterative

solution methods are increasingly the solution methods of choice.

It is frequently desirable to improve a system's convergence properties by preconditioning. A precon-

ditioner M transforms the linear system into a related system possessing better convergence properties,

M-lAx = M-lb. Parallel algorithms have recently been developed for computing approximate inverse pre-

conditioners, but most results show them to be less effective, in terms of iterations required for convergence,

than are serial preconditioners based on incomplete factorizations (ILU) of A. However, while ILU precon-

ditioners are popular, effective, and robust, they are, according to the conventional wisdom, primarily serial

in nature.

We have developed and implemented coarse-grained algorithms that perform well for 2D and 3D prob-

lems. High performance is achieved through use of local and global orderings of partitioned matrices, coupled

with the constraint that subdomain graphs, which capture communication patterns, be identical for A and

the LU factors. Our algorithmic framework supports threshold-based (ILUT) and level based (ILU(k))

factorization methods, with optional partial pivoting (ILUTP, ILUP(K)).

ILU preconditioning is based on the computation of triangular factors L and U, where LU _ A. Pre-

conditioner application reduces to the solution of two triangular systems, Ly = b and Ux = y, during each

iteration. The factors are commonly grouped together as F = L + U - I. Several algorithms for computing

the triangular factors, L and U, are known and widely used in serial contexts.

ILUT algorithms perform row-by-row, upward-looking factorizations, discarding elements that are smaller

than a given value. Perhaps the most popular formulation is ILUT(T, p) [13], which employs a dual-dropping

*This report constitutes a revision of a paper (Copyright 1999 by ACM, Inc.) presented at the SC99 conference in Portland,
Oregon, November, 1999. The primary change is to Section 3.2, which has been rewritten to include large-scale results that

were presented at the conference but not included in the original paper.
t Old Dominion University, Norfolk, VA (email: hysom,pothen@cs.odu.edu). This work was supported by U. S. National

Science Foundation grants DMS-9807172 and ECS-9527169; by the U. S. Department of Energy under subcontract B347882

from the Lawrence Livermore Laboratory; by a GAANN fellowship from the Department of Education; and by NASA under

Contract NAS1-97046 while the authors were in residence at the Institute for Computer Applications in Science and Engineering

(ICASE), NASA Langley Research Center, Hampton, VA 23681-2199

strategy.Thefirst parameter7-is thedroppingthreshold,whilethesecondparameter,p, limits the amount

of fill in any row of the matrix. If a row in the original matrix A has r nonzero entries, then a maximum

of r + p entries are permitted in the corresponding row of F. The limit p is sometimes applied separately

to upper and lower triangular portions of the row. As with other ILU algorithms, both symmetric and

non-symmetric variants exist.

In structurally based ILU(k) algorithms, factorization is separated into symbolic and numeric phases.

The permitted locations of nonzero entries in the factor are determined during the symbolic phase, based on

the level, k. All entries in the original matrix are assigned a level of 0 and are permitted in the factor. During

factorization, whenever two matrix entries cause a new entry, the entry is assigned a level based on the levels

of the causative entries. If this level is less than or equal to k the entry is permitted in the factor. Since a

new entry may be caused by different pairs of existing fill elements, the new entry retains the minimum value

of all computed levels. ILU(k) techniques were known as early as the 1960s, and were originally developed in

the context of solving finite difference equations for elliptic PDEs. The review article [3] provides historical

references.

Two different functions have been used for assigning levels to newly created fill entries. Following most

present day implementations, we use the sum definition, which assigns the new entry the sum of the levels

of the two causative entries, incremented by one. For this definition, the length of a fill path corresponds to

the number of times an entry is divided by a pivot value during numerical factorization.

The "classical" algorithm for computing ILU(k) structures operates by mimicking upward-looking, row-

oriented factorization. This algorithm is commonly interpreted as a unioning of the rows of F, although it

also has graph theoretic interpretations.

The upper triangle of any matrix F can be associated with a directed graph, G(Fu) = (V, E), which has

has vertex set V and edge set E. A directed edge {v, w} 6 E if and only if there is a nonzero matrix entry,

fv,_ in the upper triangle of F. We assume the reader is familiar with the concept of paths in graphs. We

call G(Fu) the directed adjacency graph of the upper triangle of F. Similar graphs, G(F) and G(FL), can

be constructed for the complete matrix or the matrix's lower triangle.

The classical algorithm, then, can be interpreted as factoring row j by conducting a graph search in

G(Fu) starting from all nodes i, where the problem matrix A contains a nonzero entry ai,j.

A newer Graph Search Algorithm, which we have described elsewhere [11], computes structures identical

to those of the classic algorithm, but operates by conducting breadth-first searches in the underlying graph

of G(A T) [3 G(Au). This algorithm arises from a theorem, cited below, which is an extension of the fill path

theorem [12], originally developed in the context of complete factorizations. The fill path theorem states

that fill edges can only exist between vertices joined by a fill path.

DEFINITION 1.1. A fill path is a path joining two vertices v and w, all o/ whose interior vertices are

numbered lower than the minimum o/ the numbers o/ v and w.

THEOREM 1.2. The edge {v, w} is a fill edge o/ level k if and only if there exists a shortest fill path in

G(A) joining v and w whose length is k + 1.

D'Azevedo, Forsyth, and Tang defined fill levels in terms of shortest fill path lengths in [6], although

they used the language of reachability sets rather than fill paths. Hence they knew the result in Theorem 1,

but did not state or prove the theorem.

Theorem 1.2 has an intuitively simple geometric interpretation. Construct a sphere of radius k + 1 about

any node i in a graph. Then a fill entry fi,j can only be permitted in an ILU(k) factor if j is within the

sphere. This interpretation will be used in the next section to explain our constraint on the processor graph.

ManyotherILU algorithmsareknown;theseincludecombinationsof partialpivotingwith ILU(k)
andILUT, preservationof row-sumsin thefactor,drop-toleranceversionsof ILU(k),FastGraphSearch
techniques[11],etc.

AlthoughILU(k)algorithmsarewidelyknownandimplemented[1,4, 14],virtuallyall studieswehave
comeacrossin theliteraturehavebeenlimitedto ILU(0)or ILU(1).Thisissomewhatunfortunatesinceour
ownwork,asreportedin Section3, hasshownhigh-levelILU(k)preconditioningto behighlyeffectivefor
manyproblems.Wedefinea high-level ILU(k) preconditioner as one whose structure results from an ILU(k)

factorization, with k _ 1. As a rule of thumb, for problems with several hundred thousand unknowns, we

are interested in levels as high as ten or twelve.

The structural and numerical relationships between ILU(k) and ILUT factors, particularly for higher-

level ILU(k), have not been well studied, although for some simple cases (certain symmetric, diagonally-

dominant matrices) the algorithms can be shown to produce identical factors. Published works have tended

to report iterations and solution timings, but element-by-element comparisons between the factors themselves

have apparently not been undertaken.

The relationships between matrix orderings and ILU preconditioning performance is a complex issue

which has, and continues to be, studied by numerous researchers [2, 5, 7, 8, 9]. At least four interrelated

effects can be identified in parallel contexts. First, matrix ordering can be used to provide parallelism, i.e,

as a partitioning method. Second, from a structural viewpoint, altering a matrix's ordering and ILU(k) or

ILUT(T,p) parameters changes the amount and/or pattern of fill; this affects the amount of work required

during setup and application phases. Since altering the fill count and/or pattern also changes a precon-

ditioner's numerical properties, the third and fourth effects are alterations in convergence properties and

numerical stability.

Since our algorithmic approach intrinsically changes a problem's ordering, at various places in the fol-

lowing sections we comment on how this effects parallelism, total work (solution time), and convergence

properties. We do not address the stability issue in this work.

2. Parallel Algorithmic Framework. Our approach is based on three constraints, two of which are

merely reflective of real-world problems and hardware. First, we stipulate that the number of processors be

small in relation to the problem size: p _ N. This is typically the case for existing and planned hardware

platforms (e.g, ASCI Teraflop machines) where we may have thousands of processors but need to solve

equations with millions of unknowns.

Second, we assume the matrix A is well-partitionable. This is analogous to physical domain decompo-

sition such that subdomains have large volume to surface ratios. To generalize this notion, we call node i

(and its associated matrix row) interior if, for every nonzero entry aij or aji, nodes i and j belong to the

same subdomain. Conversely, i is a boundary node if there is at least one edge aij or aji such that nodes

i and j belong to different subdomains. In general, then, a matrix is well-partitioned if all subdomains

have large interior to boundary node ratios. Spatially discretized partial differential equations are frequently

well-partitionable.

Prior to stating our final constraint we define a subdomain graph as a graph whose nodes correspond to

subgraphs (subdomains) and whose edgeset contains edge (r, s) if subgraphs r and s are joined by one or

more edges.

Our third constraint, then, is that the subdomain graph of the factor F and the matrix A be identical.

This constraint permits the determination of all communication patterns prior to actual factorization phases,

as discussed below.

Withineachsubdomainwerequirethatinteriornodesbeorderedbeforeboundarynodes.Bythefill path
theorem[12],thisensuresthat, if anedgefi,j arises during factorization and crosses subdomain boundaries,

then nodes i and j must have been boundary nodes in the graph of A. In other words, ordering interior

nodes first in the graph of A ensures that interior nodes can not be converted to boundary nodes in the

graph of F. This permits the independent factorization of interior nodes within each subdomain. It also

preserves parallelism during preconditioner application, since subdomain interior nodes can be evaluated

independently during the triangular solves.

The independence of subdomain interiors also allows selection of ILU algorithms and parameters (e.g,

level, for ILU(k)) on a subdomain by subdomain basis. Hence, our framework is ideally suited for adaptive

preconditioning in multi-physics problems, wherein different models are used for different physical subdo-

mains.

For the remainder of this paper we assume a one-to-one and onto mapping between subdomains and

processors. Also, due to the intimate connection between matrices and graphs in the context of matrix

factorization, we use the phrases eliminating a node and factoring a row synonymously.

Figure 2.1 contains a high-level overview of our algorithm. Comments on particulars follow.

Input: A well-partitioned, distributed matrix.

1. Form subdomain graph and order vertices to reduce di-

rected path lengths by a vertex coloring.

2. On each processor, locally order interior nodes, then order

boundary nodes.

3. Factor interior rows. Processors having no lower-ordered

neighbors in the subdomain graph also factor boundary

rows, and go to step 6.

4. Receive row structure and values of boundary rows from

lower-ordered neighbors in the subdomain graph.

5. Factor boundary rows.

6. Send boundary row structures and values to higher-ordered

neighbors in the subdomain graph.

F_c. 2.1. Parallel Algorithmic Framework

The first step, which induces a global matrix reordering, generally requires global communication. How-

ever, due to the constraint p << N, this computation is not time-constraining. If special topological informa-

tion is available, e.g., a regular 2D or 3D grid has been used for discrectization, this step can be accomplished

without communication.

Steps four through six can potentially give rise to sequential bottlenecks. If processors r and s are

neighbors in the subdomain graph and r is ordered before s, then processor s cannot complete factorization

of its boundary rows until it receives factored boundary row structural and numerical values from r. Regular

2D and 3D grids can easily be ordered in red black fashion so that dependency paths for the subdomain

graph of A are at most of length one. Additional dependencies, however, can arise during factorization, as

illustrated in Figure 2.2.

It is not always possible to compute in advance where these dependencies will arise. Further, if all

dependencies are permitted, numerous synchronization points may be required in order to determine which

processors must send what to whom. Our third constraint, that subdomain graphs of A and F be identical,

1 >5<

3

F_G. 2.2. Left: ordered processor graph of A; all dependency paths are of length one. Right: some of the additional

dependencies that can arise during factorization; there is now a path length of three, 1, 3, 4, 6, which necessitates three

non-overlapping communication phases for transmittal of boundary row structure and values.

!
129 130 131 132 133 144 I /./72 57 58 59 60 60

2"/

124 125 126 127 128 l_iY'_i;l 52 53 54 55 56

P_2 119 120 121 122 123 1.iiY//_:, '0 47 48 49 50 51 P_3

114 115 116 117 118 14W'/_(,9 42 43 44 45 46

:19:1°i;iii:ii:i iiiiii il ii : i;

21 22 23 24 25 30 _"_102 93 94 95 96 97

P 0 16 17 18 19 20 29_@,,x_\101 88 89 90 91 92 P 1
11 12 13 14 15 23 l\ "%100 83 84 85 86 87

6 7 8 9 10 27 _N_i:_9 78 79 80 81 82

1 2 3 4 5 2 _ 9 _ 73 74 75 76 77

F_G. 2.3. 2D grid after global and local reordering phase. Level 1 and level 2 fill edges which cross subdomain boundaries

are shown. The four dotted lines between processors P_2 and P-4's subdomains indicate fill edges that are prohibited due to

the subdomain graph constraint. All level O, and level 1 and 2 edges not crossing subdomain boundaries, have been omitted for

clarity.

dispenses with the need for this sort of synchronization.

The constraint, however, may alter the factor's structural and numerical properties by preventing the

inclusion of some fill edges. Figure 2.3 is intended to provide an intuitive characterization of prohibited fill

edges. For a typical 2D grid, we see that prohibited edges can arise near points where subdomains touch

corners but are not neighbors in the subdomain graph. Theorem 1 tells us that these edges can only arise

within a radius of k + 1 edges about such points.

If desirable, the subdomain graph constraint can be relaxed, as long as the structure of the subdomain

graph of F can be determined before factorization begins. Acceptable subdomain graphs for F, for example,

can be computed by performing ILU(k) factorizations on the subdomain graph of A.

Several other variants of our algorithm are possible. For example, in earlier work on serial preconditioning

we developed algorithms that compute symbolic factors based solely on the nonzero structure of A [11].

Incorporating these algorithms into our framework permits complete separation of symbolic and numeric

stages for ILU(k) factorizations. This may be especially advantageous since we have found-with the exception

of ILU(0)-that the cost for symbolic factorization tends to be equal, or slightly greater than, that for

numeric factorization. These algorithms are also particularly suitable for implementation in shared memory

environments.

We have recently become aware of work by Karypis and Kumar [10], which is similar to ours in that they

employ partitioning, followed by elimination of interior nodes, followed by elimination of boundary (in their

terminology, interlace) nodes. Their experimental results are encouraging, since they support our thesis that

this general approach is effective, highly parallel, and scalable. We note the following differences between

their work and ours.

Karypis and Kumar's work centers on ILUT, while we are developing object-oriented code which supports

tailored selection of numerous ILU variants on a subdomain-by-subdomain basis. Additionally, our use of

the fill path Theorem [12], along with Theorem 1, its counterpart for ILU(k), enables us to present (see

Section 4) theoretical performance analyses. Our subdomain graph constraint enables an easy computation

of communication patterns; in contrast, Karypis and Kumar compute subdomain dependencies in an ad hoc

manner, as factorization progresses.

3. Results. Results in this section are based on the following model problems.

Problem 1. Poisson's equation in two or three dimensions

/ku ----0.

Problem 2. Convection-diffusion equation with convection in the xy plane

-e/Xu + _x e _u + e-X_u = g.

Homogeneous boundary conditions were used for both problems. Derivative terms were discretized on the

unit square or cube, using g-point central differencing on regularly spaced nx x n_ x n_ grids (n_ = 1 for

2D). The zero vector was used for the right-hand side of the resulting systems, Ax = b, and random vectors

with values in the range [-1, 1] were used for initial guesses. The coefficient for Problem 2 was e = 1/500,

which yields a moderately unsymmetric system of equations.

Although much present day scientific modeling results in systems of Partial Differential Equations (PDEs)

far more complicated than our model problems, most of our parallel code's behavior can be understood by

examining these simple problems in conjunction with ILU(k) preconditioning. ILU(k) preconditioning is

amenable to performance analysis since the structures of ILU(k) preconditioners are identical for any PDE

that has been discretized on a 2D or 3D grid with a given stencil. The structure depends on the grid

and the stencil only, and is not affected by numerical values. Identical structures imply identical symbolic

factorization costs, as well as identical flop counts during the numerical factorization and solve phases. In

parallel contexts, communication patterns and costs are also identical. While preconditioner effectiveness-

the number of iterations until the stopping criteria is reached-differs with the numerics of the particular

problem being modeled, the parallelism available in the preconditioner does not.

The structure of ILUT preconditioners, on the other hand, is a function of the grid, the stencil, and the

numerics. Changing the problem, particularly for non-diagonally dominant cases, can alter the preconditioner

structure,evenwhenthegridandstencilremainthesame.Moreover,evenfordiagonallydominantproblems,
thestructureofILUT0-,p) preconditioners is a function of two parameters, _- and p, which makes for a much

more complicated experimental space than when structure is controlled by the single parameter, k.

These are the primary reasons why, even though our algorithmic framework is suitable with use of

ILUT0-,p) and other ILU variants, we find performance evaluation more meaningful when carried out in the

context of ILU(k). In addition, most ILU(k) implementations separate symbolic from numeric factorization,

thus permitting an easy determination of the time spent in each stage. We typically see that the symbolic

phase-during which no floating point operations are issued-takes as long or longer than the numeric phase.

These relationships are very difficult to determine for ILUT, since the symbolic and numeric phases must be

interleaved on a row-by-row basis.

In addition to demonstrating that our algorithm can provide high degrees of parallelism, several other

issues must be addressed. Our results show that available parallelism increases with level, so we need

to examine the effectiveness of high-level preconditioners for reducing total solution time. Since memory

requirements are directly related to fill count, we should consider whether the storage costs imposed by

high-level preconditioners are acceptable. As there is not much point in parallelizing operations which only

account for very small proportions of execution time, we need to examine how much run time is typically

consumed by preconditioner computation. Finally, since matrix orderings can significantly effect execution

time for both ILU(k) and ILUT, we should look at how the matrix orderings required by our approach affect

convergence behavior.

3.1. Precondltloner Effectiveness. In this subsection we consider the effectiveness of high-level pre-

conditioners; look at the relationships between factorization time, total execution time, and level; examine

storage costs; and consider how the orderings imposed by our algorithms effect convergence. These topics

are fairly easy to address since they can be adequately examined in sequential environments. The results

are important, however, because they lay the groundwork for interpreting our code's performance in parallel

environments, presented in the next subsection.

Experiments in this subsection were conducted on a Sun Ultra-30, with 1024 Megabytes of main memory

and a CPU clock rate of 300 MHz. Problem 1 was solved using the Conjugate Gradient method and left

preconditioning. Problem 2 was solved using GMRES with restart=30, Unmodified Gram-Schmidt, and

1 step iterative refinement orthogonalization. The solvers were based on optimized code from the PETSc

library, with our own routines used to measure CPU time. Stopping criteria was N rk N2_ rtol with rtol,

the relative decrease in the residual norm, ranging from 10 -5 to 10 -7 .

Since Problem 1 is symmetric, it could be preconditioned using Incomplete Cholesky Factorization

(IC(k)) rather than ILU(k). However, if the problem were augmented by the addition of a first derivative

term the resulting system would unsymmetric and we would be forced to use ILU(k), even if the first-order

term had near-negligible coefficients. We therefore believe that reporting on ILU(k) rather than IC(k) makes

the results more general.

Total solution times are reported in preference to iteration counts since work-per-iteration is largely

dependent on the total amount of fill permitted in the preconditioner. Also, evaluating preconditioner

effectiveness by iteration count comparison ignores preconditioner setup (factorization) time, which can

constitute a considerable proportion of total execution time.

We begin by reviewing some statistics concerning ILU(k) behavior in general. Table 3.1 summarizes

ILU(k) behavior for Problem 1. The table shows total solution time, the percentage of total solution time

devoted to preconditioner factorization, and the ratio of nonzeros in the preconditioner to that in the problem

TABLE 3.1

Convergence behavior for Laplace's equation (Problem 1) on 2D, 360 x 360 grid.

level

0 1.0

1 1.4

2 1.8

3 2.6

4 3.4

5 4.2

6 4.9

7 5.7

8 6.5

9 7.3

rtol = 10 -5 rtol = 10 -7

nzF/nzA solution time setup ratio (%) solution time setup ratio (%)

10.1

7.8

7.1

6.4

6.3

6.9

6.5

7.4

8.0

8.8

5

12

15

25

32

39

50

54

62

65

33.2

24.6

21.6

19.1

17.6

16.8

16.4

15.7

16.4

16.6

TABLE 3.2

Convergence behavior for Convection-Diffusion equation (Problem 2) on 2D, 360 x 360 grid.

1.6

3.6

4.9

8.2

11.6

16.4

20.0

25.0

30.0

34.8

level

0 1.0

1 1.4

2 1.8

3 2.6

4 3.4

5 4.2

6 4.9

7 5.7

8 6.5

9 7.3

10 8.1

rtol = 10 -5 rtol = 10 -7

nzF/nzA solution time setup ratio (%) solution time setup ratio (%)

39.2

34.3

33.5

31.4

30.2

28.0

26.4

25.4

23.5

23.6

25.8

1.3

2.2

2.7

4.1

5.8

8.7

11.2

13.8

18.8

21.8

25.6

165.8

108.2

99.5

82.1

77.6

69.4

56.9

54.3

54.0

48.4

50.0

0.3

0.7

0.9

1.5

2.2

3.5

5.2

6.6

8.0

10.5

13.2

(nzF/nzA).

There are three points to be noted in this data. First, the most time-emcient solutions require relatively

high fill levels. Second, as greater resolution is required (smaller rtol), the optimal preconditioner level

increases. Changing the stopping criteria by a factor of 100, from rtol = 10 -5 to rtol = 10 -7, results in a

change from ILU(4) to ILU(7), for fastest solution. Finally, for the most time-emcient solutions, between 1/3

and 1/4 of execution time was spent in the preconditioner setup phase (symbolic and numeric factorization).

Application of Amdahl's Law tells us that, if we can not effectively parallelize ILU(k) factorization, we can

never obtain more than a three-fold speedup.

Table 3.2 contains similar statistics for Problem 2. The same trends noted for Problem 1 are evident

here, although the fastest solutions required an even greater fill level.

It is illuminating to note how the amounts of fill in ILU(k) preconditioners compare with the amounts

commonly permitted in ILUT preconditioners. In [2], Benzi, et al., compared preconditioner performance

TABLE 3.3

Comparison of IL U(k) and IL UT fill counts, 2D domain.

grid size ILUT(.01,5), ILUT(.001,10)

128 × 128

256 × 256

300 × 300

400 × 400

31

126

174

310

ILU(1)

154 16 31

628 64 128

865 88 177

1544 158 316

TABLE 3.4

ILU(2) ILU(3) ILU(4) ILU(5)

62

256

353

630

93

383

528

944

Comparison of IL U(k) and IL UT fill counts, 3D domain.

grid size ILUT(.01,5), ILUT(.001,10)

16 × 16 × 16

32 × 32 × 32

40 × 40 × 40

50 × 50 × 50

14

119

236

466

ILU(1)

38 9

313 83

615 167

1206 336

ILU(2) ILU(3)

22 47

216 475

439 971

885 1965

124

509

702

1257

between ILU(0), ILU(1), ILUT(.005,5), and ILUT(.001,10) 1, for a variety of problems and matrix orderings.

We noticed that, for most of the cases reported, the amount of fill permitted in the ILUT preconditioners

exceeded that permitted in the ILU(k) factors. This motivated us to wonder what ILU(k) levels would be

required to produce amounts of fill comparable to those in the ILUT factors. Tables 3.3 and 3.4 show this

comparison. The figures for the ILUT levels are from [2]. The figures for ILU(k) were computed using the

PETSc library. In these tables we use Benzi's method of reporting fill counts, which is the amount of fill

greater than level zero, in either the upper or lower triangle of the factor.

Even though the entries are computed differently, every entry in an ILUT factor can be assigned the

level it would have, if it were permitted in an ILU(k) factor. Since The fill counts in the 2D ILUT(.001,10)

factors in Table 3.3 exceed the fill counts for the ILU(5) factors, it follows that the ILUT factors must include

at least some level six, or larger, entries.

High-level preconditioners are effective for many problem types. The Driven Cavity set from the

SPARSKIT Collection consists of a series of non-symmetric, indefinite matrices which arise from model-

ing of the incompressible Navier-Stokes equations. They are reportedly difficult to solve iteratively due

to the high condition numbers of the coefficient matrices. All the problem can be solved, however, using

high-level preconditioners. Table 3.5 shows a typical problem, for which the fastest solution time was ob-

tained with ILU(3) preconditioning. This problem can also be solved using high-level ILUT preconditioning,

although we found that solution times were slower, with larger amounts of fill required to force convergence.

The use of high-level preconditioning is counter-intuitive in the sense that a primary reason for employing

iterative solvers is to reduce storage requirements. There are, however, large gaps between the amounts of fill

we have been talking about and that required for direct factorization. Figure 3.1 shows storage requirements

as a function of level, for k = 0,..., K, where ILU(K) results in complete factorization. The conclusion is

that memory requirements for high-level preconditioning, given the levels we have been discussing, do not

begin to approach that needed for direct solution methods.

While the curve in Figure 3.1 shows fill growth typical of what we have observed for all medium to

1More accurately, they used SILUT, a modification of the ILUT algorithm which gives rise to symmetric preconditioners

when the original matrix is symmetric.

TABLE 3.5

Iterative performance for Driven Cavity problem e40r3000. ILU(1) converged very slowly, and was terminated before

achieving exit criteria.

level solution PC formation residual iterations

time (s) time (%) norm

1 95.7 8 8.0e-3 NA

2 91.8 14 3.0e-5 299

3 49.2 49 1.8e-5 85

4 58.2 58 3.6e-5 56

5 64.5 64 4.7e-5 29

6 78.7 85 1.5e-5 27

50

5O

4O

30

3D grid, n = 16, N = 4096

f

/

2O

l0

/

/

0 I I I I I

0 5 10 15 20 25 30

level

F_G. 3.1. Storage requirements vs. fill level for 16 × 16 grid

large matrices studied, a word of caution is in order. Smaller matrices, such as most in the Harwell Boeing

collection, tend to have relatively small maximum levels. For such problems, employing ILU(k) for k > 1

may result in factors whose sizes approach those for complete factorization.

We now turn to the question of how our algorithm's matrix reorderings affect convergence. Although our

algorithm admits a high degree of parallelism (as demonstrated in the following subsection), the parallelism

will not be of much utility if an imposed ordering results in a significant degradation of convergence behavior.

There are several ways we might investigate this question. For example, we could completely solve linear

systems in parallel environments, using our preconditioner code in conjunction with some iterative software

library such as PETSc. This is, of course, the ultimate goal. However, measurements from such a procedure

do not allow us to isolate the effects of matrix orderings from other influences. Instead, the measurements

would reflect a combination of influences from our algorithm, its implementation, the PETSc library, the

MPI specification as implemented on some selected platform/communication network, contention with other

users for system resources, and so on.

We therefore elected to examine ordering effects in a more tightly controlled environment. Problems were

generated, and local and global orderings carried out, using our parallel code. Each subdomain's interior

10

=o

4.5

4

3.5

2.5
0.2

2D 240 x 240 grid, levels 0 7

i

p=l
p=9

p=25 +_

/J

I I I I I I I

0.4 0.6 0.8 1.0 1.2 1.4 1.6

fill count (millions)

F_G. 3.2. Effect of matrix partitioning and ordering, 2D domain

1.8

8

32

30

28

26

24

22

20

18
1.0

2D 600 x 600 grid, levels 0 7

i i

p=l
p=9

p=25 +_

/

I I I

2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10

fill count (millions)

FIG. 3.3. Effect of matrix partitioning and ordering, 2D domain

ll

nodes were locally numbered using natural ordering. At this point the matrices were written to file, after

which convergence behavior was studied on a uni-processor platform.

For each series of runs we generated problems for 2D grids ranging in size from 128 x 128 to 600 x 600

grid-points, and optimally partitioned the grids amongst 1, 4, 9, 16, and 25 processors. Our findings are

summarized in Figures 3.2 and 3.3. The figures show that the partitioning and subsequent ordering does

affect convergence behavior, but that the effect is relatively minor. Further, the effect decreases as the

problem size increases, relative to the number of processors. The fastest solution time on the 240 x 240 grid

was 18% slower for 25 processors than for a single processor, while there was only a 3.8% difference on the

600 x 600 grid.

11

TABLE3.6
Symbolic and Numeric factorization for 3D Scaled problem, 91,125 unknowns per processor, 7-point stencil, ILU(2)

factorization on interior nodes, IL U(1) factorization on boundary nodes, timings in seconds. Dashes (-) for Beowulf and HPC

10000 indicate the machines have insufficient cpus to perform the runs. Dashes for the T3E indicate jobs that, for reasons

partially unknown, did not complete successfully. The "variability" line indicates whether repeated results were reasonably

consistent.

Procs T3E Origin2000 Beowulf HPC 10000

(NERSC) AMES (ICASE) (ODU)

1

8

27

64

125

216

2.04 2.27 2.13

2.78 2.44 3.11 2.43

3.32 2.96 4.06 2.97

3.11 4.64 -

3.50 3.18 - -

3.32

variability low high low high

3.2. Parallel Performance. In this subsection we report timing and scalability results for precondi-

tioner factorization and application on four parallel platforms:

* a Cray T3E at National Energy Research Scientific Computing Center (NERSC, part of the Com-

puting Sciences Directorate at Lawrence Berkeley National Laboratory);

* an SGI Origin2000 at NASA Ames Research Center (AMES);

* the Coral PC Beowulf cluster at the Institute for Computer Applications in Science and Engineering

(ICASE);

* a Sun HPC 10000 Starfire server at Old Dominion University (ODU).

Table 3.6 shows factorization timings for a 3D scaled problem with approximately 91,125 unknowns per

processor. Reading down any of the columns shows that performance is highly scalable, e.g., for the SGI

Origin2000 factorization for 216 processors and 19.7 million unknowns required only 62% longer than the

serial case. Scanning horizontally indicates that performance was similar across all platforms, e.g., execution

time differed by less than a factor of two between the fastest (Origin2000) and slowest (Beowulf) platforms.

The last row in the table, "variability," summarizes our experience that timings for identical repeated

runs on the HPC 10000 and SGI typically varied by 50% or more, while repeated runs on the T3E and

Beowulf were remarably consistent. Other researchers have noted similar phenomena. On the T3E the

variability is due to contention with other users for common resources. On the HPC 10000, where we had

essentially exclusive use of all resources, the high degree of variability is attributed contention on the shared

memory bus.

Table 3.7 shows similar data and trends for the triangular solves for the scaled problem. Scalability for

the solves was not quite as good as for factorization; e.g., the solve with 216 processors took about 2 1/2

times (250%) longer than the serial case.

Table 3.8 shows speedup for a constant-sized problem of 1.7M unknowns. As expected, there is a clear

correlation between performance and subdomain interior/boundary node ratios: as the ratio drops, so does

performance.

We remind the reader that, for ILU(k), the structure of the symbolic factor depends on the grid and

stencil only. Hence, the performances reported in these tables is applicable to any PDE that has been

discretized with a 7-point central difference stencil.

12

TABLE3.7
Triangular solves for 3D Scaled problem, 91,125 unknowns per processor, %point stencil, IL U(2) factorization on interior

nodes, ILU(1) factorization on boundary nodes, timings in seconds. Dashes (-) for Beowulf and HPC 10000 indicate the

machines have insufficient cpus to perform the runs. Dashes for the T3E indicate jobs that, for reasons partially unknown,

did not complete successfully. The "variability" line indicates whether repeated results were reasonably consistent.

Procs T3E Origin2000 Beowulf HPC 10000

(NERSC) AMES (ICASE) (ODU)

.487

.623

1

8

27

64

125

216

.182 .187 .289

.431 .359 .515

.405 .508 .629

.472 .556 -

.610 - -

.646 - -

variability low high low high

TABLE 3.8

Speedup for 3D constant-size problem; grid was 120 x 120 x 120, for a total of 1.7M unknowns; data is for ILU(O)

factorization performed on the SGI Origin2000; "I/B" is the ratio of interior to boundary nodes in each subdomain.

Procs Emciency I/B Time Unkowns/

(%) Ratio (seconds) Processor

8 100 9.3 2.000 216,000

27 95 6.0 .846 64,000

64 66 4.3 .408 27,000

125 53 3.4 .307 13,824

4. Performance Analysis. In this section we present simplified theoretical analyses of algorithmic

behavior for matrices arising from PDEs discretized on 2D grids with five-point stencils and 3D grids with

seven-point stencils. Since our arguments are structural in nature, we assume ILU(k) is the factorization

method of choice. After a word about nomenclature, we begin with the 2D case.

The word grid refers to the grid (mesh) of unknowns; for Regular 2D and 3D grids with five and seven

point stencils, respectively, this is identical to the undirected graph, G(A). We remind the reader that we

use the terms eliminating a node and factoring a row synonymously.

We assume the grid has been block-partitioned, with each subdomain consisting of a square subgrid of

dimension c x c. We also assume the subdomain grid has dimensions v_ x v_, so there are p total processors.

There are thus N = c2p nodes in the grid, and subdomains have at most 4c = 4V/_ boundary nodes.

If subdomain interior nodes are locally numbered in natural order and k _< c, matrix rows in the factor

F can asymptotically be considered as having 2k (strict) upper triangular and 2k (strict) lower triangular

nonzero entries. The justification for this statement arises from consideration of Theorem 1; the geometric

intuition is illustrated in Figure 4.1.

Assuming the classic ILU(k) algorithm is used for symbolic factorization, both symbolic and numeric

factorization of row j entails 4k 2 work. This is because, for each lower triangular entry fj,i in matrix row j,

factorization requires "touching" each upper triangular entry in row i.

A red-black ordering of the subdomain grid gives an optimal bipartite division. If red subdomains are

numbered before black subdomains, our algorithm simplifies to the following three stages.

13

7

1

i 10 11 12

2 3 4 5 6

7

1

9__410 11 12

5 6

7 8 _ 11]12

1 2 13 "_4 _ 6

F_G. 4.1. Counting lower triangular fill edges in a naturally ordered grid. From top to bottom, there are two level 0 edges;

there is one level 1 edge, due to fill path 9, 3, 4; there is one level 2 edge due to fill path 9, 3, 4, 5; there are two level 3 edges,

due to fill paths 9, 3, 4, 5, 6 and 9, 3, 2, 1, 7. Two additional fill edges are created for every level greater than three. Since

there is a total of six fill edges for a level 3 factorization, we conclude that asymptotically there are 2k lower triangular edges

in a level k factorization. By symmetry, the upper triangle must contain the same number of entries.

1. Red processors eliminate all nodes; black processors eliminate interior nodes.

2. Red processors send boundary-row structure and values to black processors.

3. Black processors eliminate boundary nodes.

If these stages are non-overlapping, the cost of the first stage reduces to the cost of eliminating all nodes

in a subdomain. This cost is 4k2c 2 - 4a2N
P

The cost for the second stage is the cost of sending structural and numerical values from the upper-

triangular portions of the boundary rows to neighboring processors. If k << c, Theorem 1 can be used to

show that, asymptotically, a processor only needs to forward values from c rows to each neighbor. Assuming

a standard, non-contentious communication model wherein a and/3 represent message startup and cost-per-

word respectively, and with time for each operation normalized to unity, the cost for this step is 4(a+2k/3c) --

4(a + 2k/3v/_).

Since the cost of factoring a boundary row can be shown to be asymptotically identical to that for

interior row, the cost for eliminating the 4c boundary nodes is (4k2)(4c) = 16k 2V_"factoring an

Speedup can then be expressed as

14

4k2N
speedup =

4k2Np +4(a+2k_v/_-)+ 16k2vf_-'

where the numerator represents cost for uni-processor (sequential) execution, and the three denominator

terms represent the costs for the corresponding stages of the simplified algorithm for parallel execution.

Two interpretations of this equation are in order. First, for a fixed problem size and number of processors,

the parallel computational cost (the first and third terms in the denominator) is proportional to k2, while

the communication cost (the second term in the denominator) is proportional to k. This explains the

experimentally observed increase in emciency with level. Second, if the ratio Nip is large enough, the first

term in the denominator will dominate the second and third terms, and emciency will approach 100%.

For the 3D case we assume partitioning into cubic subgrids of dimension c x c x c and a subdomain grid

of dimension pl/3 × pl/3 × pl/3, which gives N = c3p. Subdomains have at most 6c 2 boundary nodes. A

development similar to that above shows that, asymptotically, matrix rows in the factor F have k2 (strict)

upper and lower triangular entries, so the cost for factoring a row is k4. Speedup for this case can then be

expressed as

kdN

speedup = kdNp + 6(a + k2_(N) 1/3) + 6kd(N) 1/3"

REFERENCES

[1] S. BALAY, W. D. GROFF, L. CURFMAN MCINNES, AND B. F. SMITH, PETSc home page.

http://www.mcs.anl.gov/petsc, 1999.

[2] M. BENZI, W. JOUBERT, AND G. MATEESCU, Numerical experiments with parallel orderings for ILU

preconditioners, Electronic Transactions on Numerical Analysis, 8 (1999), pp. 88-114.

[3] T. C. CHAN AND g. A. VAN DER VORST. Approximate and Incomplete Factorizations, Parallel Numer-

ical Algorithms, vol. 4 of ICASE/LaRC Interdisciplinary Series in Science and Engineering, Kluwer

Academic, Dordecht, Keyes, D. E., Samed, A., and Venkatakrishnan, V., eds., 1997, pp. 167-202.

[4] E. CHOW AND M. A. HEROUX, Block preconditioning toolkit, http://www.mcs.anl.gov/petsc, 1997.

[5] E. CHOW AND Y. SAND, Experimental study of ILUpreconditioners of indefinite matrices, J. Comput.

Appl. Math, 86 (1997), pp. 387-414.

[6] E. F. D'AzEvEDO, P. A. FORSYTH, AND W.-P. TANG, Towards a cost-effective ILUpreconditioner

with high level fill, BIT, 32 (1992), pp. 442-463.

[7] I. S. DUFF AND G. A. MEURANT, The effect of ordering on preconditioned conjugate gradients, BIT,

29 (1983).

[8] S. DUI AND A. LICHNEWSKY, A graph-theory approach for analyzing the effects of ordering on ILU pre-

conditioning, Tech. Report 1452, Institut National de Recherche in Informatique et en Automatique,

Rocqhencourt, BP105-78153, Le Chesnay Cedex, France, 1991.

[9] V. EIJKHOUT, Analysis of parallel incomplete point factorizations, Linear Algebra and its applications,

154-156 (1991), pp. 723-740.

[10] G. KARFIS AND V. KUMAR, Parallel threshold-based ILUfactorization, Tech. Report 061, University of

Minnesota, Department of Computer Science/Army HPC Research Center, Minneapolis, MN 55455,

1998.

15

[11] A. POTHEN AND D. HYSOM, Fast algorithms for incomplete factorization. To be submitted as an

ICASE report.

[12] D. J. ROSE AND R. E. TARJAN, Algorithmic aspects of vertex elimination on directed graphs, SIAM J.

Appl. Math., 23 (1978), pp. 176-197.

[13] Y. SAND, ILUT: A dual-threshold incomplete LUfactorization, Numer. Linear Algebra Appl., (1994),

pp. 387-402.

[14] --, Sparskit, version 2. http://www-users.cs.umn.edu/_saad/soRware.html, 1994.

16

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE

May 2000

4. TITLE AND SUBTITLE

Efficient parallel computation of ILU(k) preconditioners

6. AUTHOR(S)

David Hysom and Alex Pothen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-2199

3. REPORT TYPE AND DATES COVERED

Contractor Report

5. FUNDING NUMBERS

C NAS1-97046

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 2000-23

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR-2000-210120
ICASE Report No. 2000-23

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell
Final Report

Proceedings of SC'99.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 60, 61
Distribution: Nonstandard

Availability: NASA-CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

We report the development of a parallel algorithm for computing ILU preconditioners. The algorithm attains a

high degree of parallelism through employment of a two-level ordering strategy, coupled with a subdomain graph

constraint that regulates the location of nonzeros in the Schur complement. Experimental results include timings

on four parallel platforms, for problems with up to 20 million unknowns running on up to 216 processors. The
results support our theoretic analysis that the algorithm is highly scalable, for both preconditioner computation

(factorization) and application (triangular solve) stages.

14. SUBJECT TERMS

incomplete factorization, preconditioning, parallel ILU preconditioning

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATIOI_

OF THIS PAGE

Unclassified

15. NUMBER OF PAGES

21

16. PRICE CODE

A03
19. SECURITY CLASSIFICATION 20. LIMITATION

OF ABSTRACT OF ABSTRACT

Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

